Tutorial 1: What is reinforcement learning?

Jacob Green

Abstract

We cover the Markov decision process formulation of reinforcement learning on games of
complete information, and the partially observable Markov decision process formulation of
reinforcement learning on games of incomplete information, showcasing the observation-level,
episode-level and belief-level reward schemas.



1 Discrete Markov Decision Processes

The foundational work on Markov Decision Processes (MDPs) began with Bellman [1957], es-
tablishing the theoretical framework for dynamic programming and sequential decision-making.
Howard| [1960] further developed the connection between dynamic programming and Markov pro-
cesses, providing the mathematical foundations that underpin modern reinforcement learning.

The most natural setting for reinforcement learning is a game. We will be working with discrete
games (e.g. chess, poker), that have an agent interact with its environment at timest = 0,1,..., N.
Each game comes with a set § containing all possible variants of the game’s world, which we call
the state space, and a set A containing all possible action-variants in the game’s world, which we
call the action space. For ease of notation, we will assume throughout S and A are discretd!]

Example 1. (simple chess) In the game of chess, the position of all the pieces on the chessboard
describes the game at all times. Hence, we may let S be the space of 8 X 8 matrices with entries in
{Pa, Bi, Kn, Ro, Qu, Ki}. For A, we will assume no castling, en-passant, or pawn-upgrades to keep
things simple. We can describe A by describing the possible moves for each piece, and assuming
all pieces can be everywhere on the board. Under this assumption,

A=PaUBiUKnURoU QuU Kz

where
Pa= | {Pai;((i,j+1), Pai(i,j+2)}

1<i,j<8

Bi= |J {Bi,litkj+k)}

1<i,j k<8

Kn= |J {Kni;(i+1,j+2),Kni;(i 2,5+ 1), Knij(i £ 1,5 — 1), Knij(i £ 1,5 — 2)}

1<i,j<8

Ro= | {Roi;(i+k,j), Ro;(i,j+k)}

1<i,j,k<8

Qu=|J {Qu,(i £k ), Qu itk j+k), Qu (i j+k)}
1<i,j k<8
Ki= | {Kij;(i £ 1,5), Kip;(i £ 1,5 £ 1), Kii (i, j + 1)}
1<i,j<8
and for P € {Pa, Bi, Kn, Ro, Qu, Ki} we define P, ;(m,n) to be the action of moving piece P from
coordinate (i,7) to (m,n).

i.e. finite or countable



By describing our state space with a singular seiﬂ S, and our action space with a singular set A,
we can make the following assumption.

Assumption 1. (Games are Markovian) Throughout these tutorials, we will assume our games
exhibit Markovian dynamics: i.e.

P(st11ls6, as, e-1,50-2, - - . ) = P(s¢41]8¢, ar)
where P is a probability measure describing state transitions.

To have this Markov property, all the information gained in the game history (s, ag, $1, - - -, Sn—_1, @n_1, Sn)
up to time t = n must be encoded in the state s, € §. If this is the case, we can describe our
game as a discrete-time Markov process by defining an wnitial state distribution

T()(S()) : S — [0, 1]
and a transition distribution
T(St+1|5t,at) SXAXS — [0, 1]

obeying, for all (s,a) € S,
Z To(s') =1 and Z T(s'|s,a) =1
s'eS s'eS

Note, our game is only a discrete-time Markov process if all our actions are deterministic and pre-
specified. As we will see, our framework is more general, though the intuition remains relevant.

Example 2. (transition distributions for deterministic games) Suppose we have a deterministic
game with state space S and action space A. In this setting, we have an update function f(a|s) :
SxA— S, (s,a) — s that maps actions on a given state to updated states. We can specify the
transition distribution for such a game, explicitly, by

T(f(aslse)|st a) =1

and T = 0 elsewhere.

2Note, we could not do this if we, for example, considered a “player state” that depended on the action history
up to time n. Even if this space of player states was total, i.e. contained all possibilities on action histories, the
next player state could depend on dynamics not contained in the previous state, action pair. We will consider
these models, which we call POMDPS (partially observable Markov decision processes) next section, as a natural
generalisation to our MDP (Markov decision process) model.



All together, we’ve found we can describe the dynamics of our game with the tuple (S, A, T, Ty). It
remains to describe how our agent actually learns. The fundamental idea of reinforcement learning
is as follows:

1. We reinforce desired behaviour by rewarding our agent
2. We punish undesired behaviour by penalising our agent

Recall example 1. In this example, given a current state, the vast majority of our action space A
consists of invalid moves. We can have our agent learn to play only valid moves by punishing it
when it attempts an invalid move. Likewise, we can have our agent learn to play good moves by
rewarding it when it plays a good move, (e.g. taking a piece).

We will do this by considering reward signals. Given a state action pair (s,a) and a resulting state
s" ~ T(-|a,s) we choose some signal r € R to give our agent, which contains the information on
how desirable the outcome s’ was. Our reward signal map is thus

R(s'|a,s): Sx AxS =R
Is this by itself enough for our agent to learn? Consider the following example.

Example 3. (infinite cumulative rewards) Consider the following game: At each time t > 1 you
are given £1 and allowed the choice to pay £1 to bet on a fair coinflip. If the coin lands heads, you
receive £10, and if the coin lands tails you lose your bet. This game has state space S = {H, T}
and action space A = {Bet, Fold}. The dynamics are given bgﬂ

1
T:SxAxS— [0,1],(s’|a,8):§
for all s,s" € S and a € A. The natural reward signal is simply the outcome of the bet plus 1, if

we bet, and £1 otherwise. We have

11 : ¢ =Handa= Bet
R(s'|la,s) =<0 : s =Tanda= Bet
1 : a= Fold

We seek to find a strategy that mazimises the expected cumulative reward for playing the game
indefinitely,

o0

E St+1|at; St ]

81752
t=0

3Note we do not need to specify an initial state distribution, nor consider the initial state in any meaningful way,
as the transition distribution T(-|a, s) is independent of s, so that T(:|a,s) = T(:|a). It is also independent of a.



Consider the case where we always bet, and the case where we never bet. In both cases

o0
E 3t+l‘at73t =00

t=0

517527

as R(sir1]at, s¢) 7 0 ast — oo. How can we decide which strategy is better?

One approach is to consider the ezpected discounted cumulative returns

Es s0,~T [Z ’VtR(StH‘au St)]

t=0

for some fixed v € [0,1). In this case, we see the never bet strategy has expected discounted cu-
mulative return 1%, whereas the always bet strategy has expected discounted return % > 1%
Hence, we can argue that the always bet strategy is indeed better than the never bet strategy.

Note that, by taking this approach, if R is a bounded function we will always have a finite expected
discounted cumulative returng’] Sometimes, our model naturally should discount future returns
(e.g. a stock-trading model would have to discount for the time-value of money), but other times,
introducing this discount rate v € [0, 1) is simply a mathematical trick to ensure finite expected
discounted cumulative returns on infinite horizons. If our horizon, N, is finite, we may take v =1
and consider simply the expected cumulative returns, though this often is impractical.

All together, we've described a tuple (S, A, T, Ty, R,~y, N). We call this tuple a discrete Markov
decision process. We conclude with a concise formal definition.

Definition 1. (discrete MDP) A discrete Markov decision process is a tuple (S, A, T, Ty, R,~y, N)
where

e S and A are sets, named the state and action spaces respectively.

o T(s'|a,s) : Sx AxS —[0,1] is a conditional distribution, named the transition distribution,
describing the dynamics of state-action updates.

e T(s): S — [0,1] is a distribution, named initial state distribution, describing the dynamics
of initial state selection.

o R(|a,s): Sx AxS — R isamap defining the reward signalled by observing state s’ from
the state-action pair (s, a)

13IM > 0s.t. Vs, s € S,a€ A:|R(s']s,a)| < M = 30,00V R(seralse,a) < M Y7204 = % <00
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e v € [0,1) denotes the discount rate
e N € NU{+oo} denotes the, possibly infinite, time horizon.

If N < 400 we will call our discrete Markov decision process finite.

For the remainder of this section, let (S,.A, T, Ty, R,~, N) be a discrete MDP.

In the continuation of example 3, we compared two strategies by computing the expected dis-
counted cumulative return of each strategy. We can abstract this approach to formalise the rein-
forcement learning objective. First, we need to define this notion of a strategy in abstract. The
naive idea is to consider a map S — A, i.e. for each state s € S, we specify a chosen action a € A.
This is reasonable, but it fails in two regards:

1. We will never learn optimal strategies where action randomisation is optima]ﬂ
2. Given a learnt map S — A, we have no uncertainty quantification.

Note the somewhat conflicting nature of these remarks. If randomisation is optimal, it may appear
that we are just uncertain of our actions, and conversely if we are randomising, it may appear like
a stochastic strategy, when in reality our agent is simply uncertain of its actions. It is non-trivial,
in practice, to differentiate between the two. We’ll provide a modernﬂ approach next tutorial.

Given we’d like to allow for randomisation and uncertainty quantification, the natural approach is
to instead consider a distributionﬂ on A for each s € §. Formally, we define a policy as a map

m(als) : AxS—[0,1] with VseS : ) m(als) =1

acA
Given a an agent utilising a policy 7 for the duration of a game with horizon N, we will receive,
upon the game’s completion, 7 = (sg, ag, S1,71, a1, -+, SN—1,"N—1,AN—1, SN, TN ) Where a,, ~ 7(-|s,,)
and 7, := R(Sp41|Sn, an) forn =0,1,..., N—1. We call 7 an epsiode. If N = 400, then 7 is an in-

finite tuple. If N is finite, note we have one more state observation than action/reward observation.

We’d like to know the distribution of 7. It can be proven (exercise) that, given a policy 7, episodes

are distributed by
N

T(7;m) = To(so) H 7 (ar|se)T(s¢fse-1, ar—1)

t=1

5See, for example, game theoretically optimal poker.
6Tt’s pretty intuitive too, so we can motivate it.
7Or, equivalently, a conditional distribution on A x S.



The goal of reinforcement learning is to learn 7 that maximises our expected episodic discounted
cumulative reward

N
J(m; T) = Eror(;m [Z ’YtR(StH‘St;at)]

t=1

Namely, we seek to solve the optimisation problem

argmin J(m; T)

™

over a specified space P of policies.

2 Partially Observable Discrete Markov Decision Processes

The extension to partially observable settings was pioneered by Smallwood and Sondik| [1973],
who established the theoretical foundations for optimal control under partial observability. The
modern computational framework is due to Kaelbling et al|[1998], who provided algorithms for
planning and acting in partially observable stochastic domains.

In many games, while the underlying dynamics are still given by a Markov process (S, T, Ty, N),
we may only observe a fraction of the global state. The natural examples here are games of incom-
plete information, such as poker, and in robotics, where our robot can only “see” a fraction of the
world it acts in. Our action space A remains unchanged, but now we additionally consider a set
O of possible observations. In poker, O would be our possible hands, along with common hands,
the hand’s betting history, and other metadataff] In robotics, it’d be the set of possible images we
observe, e.g. the set of H x W x 3 tensors for H x W rgb images.

Our observation o € S depends on the state. Naively, we could define a map & — O to describe
the observation process, but this is subject to a critical fault: we cannot model observation noise.
Consider the game often called “options trading”. Our agent will be fed order-books for various
options contracts, however, due to the nature of financial dataﬂ these are subject to some noise.
What we observe may not, directly, be a function of the world, but some function of the world
pertubed by noise. Hence, we define an observation distribution O(ols) : O x & — [0,1]. This a
conditional distribution, so for each s € S we have ) _,O(o|s) = 1.

8e.g. stack sizes, button position. We could also, if we want to train a reactive agent, include betting histories
outside the the window of the current hand, along with all the usual observational data.
9Namely, latency compounded with continuous pricing.



Thus far, we have a tuple (S,A,O, T, Ty, O, N) describing the dynamics of the game and the
observation process. It remains to define rewards, how our agent will learn, in this more general
environment. Last section, in the complete information case, we could define a reward signal
R(s'la,s) : S x A xS — R. The naive approach for us is to instead consider a map O x A x O —
R, a reward signal for observations. This, while certainly practical, makes a key assumption:
observations are sufficiently informative to about rewards. More formally, we’re assuming

Vs, 1, 80, 81 € S,a € A: (O(o]sg) > 0AO(o|sy) > 0) = R(s1]a, sq) = R(s}|a, sp)

Consider the game of heads-up poker. If we observe our opponent folding to our bet, our natural
reward S X A X § — R would be the amount we won from the pot. This, however, misses a great
deal of possible reward structure. A full § x A x § — R reward would factor in the cases where
we bluffed our opponent off of a stronger hand than ours (greater reward, gained value) and the
case our opponent has a weaker hand (lesser reward, missed value).

So, we’d still like to still use our reward signal S x A x & — R. The question then is, how do we
compute R(s'|a, s) if we only have access to 0,0’ € O7 An approach often taken in the literatureiﬂ
is to maintain beliefs b, : S — [0, 1], which is a distribution over S describing the agent’s certainty
we are in a state s € S, throughout the times ¢t = 0,1,2,..., N. We then approximate R(s;1|ay, S¢)
with

R(bt+1 |at7 bt) = E[R(3t+1|ata St) |bt+17 Ay, bt]

We call this map R : A(S) x A x A(S), where A(S) is the space of distributions over S, or
equivalently the S-simplex, our belief-level reward signal, which approximates the unobservable
reward signal R(s;11|a, s;). This is an expectation over the joint posterior distribution for

(Sb St+1) given (bt, Qi bt+1)~

Proposition 1 (belief-level reward signal formula). Given the setup above, we have

5 D sisiines be(8)T(seralse, a)O(0pt]ar, sepr) R(set|ar, se)
R(biy1lar, by) = / /
Zs,s’es bi(s)T(s']s, ar)O(0rs1las, s)

Proof. Our beliefs at time ¢ + 1, b;,1 are obtained from our beliefs at time ¢, b;, action a;, and
observation at time t + 1, 0411, SO we may express

R(beyi|as, b) = B[R(si1|ar, 0)[br, ar, 0111] = Z P(st, str1lbe, ar, 0141) R(seslar, se)

5¢,5t+1€S

10More so the theoretically literature.



where PP is the probability measure for the joint distribution (s, s;+1). By Bayes’ theoremEl

O(0r41|ar, se41)be(5¢)T(5¢41]5¢, ar)
Zs,s’es bi(s)T(s']s, a;)O(0p41]ay, s')

The result immediately follows. ]

P(St, 3t+1‘bta ag, Ot+1) =

Note, we haven’t actually specified how we update our beliefs in practice. That is a topic for
another tutoria]E, the idea behind exhibiting proposition 1 now was simply to show that, given
a fully specified observation distribution @, transition distribution T, global reward signal R and
beliefs b;, we can explicitly compute the expected approximation. The idea behind introducing
this approximation now was to show that, despite the impossibility of directly using R, to show
that we can approximate it in various ways.

There is yet another approach to defining rewards: episodic. Rather than compute a signal at
each time step ¢, we can instead compute an aggregated reward over each episode. In the POMDP
setting without reward signals, it is clear our episodes will be of the form

7 = (09, ag, 01,041, ...,0N_1,an_1,0n) € (O X A)N x O =T

Hence, we could define R as a map 7 — R, the pre-specified episodic reward. For example, in a
game where each oservation is a real, and our goal is to maximise the sum of our observed reals,
we could take R: 7+ Y"1 0.

Note that, by taking this approach, our model will only be able to learn episodically, slowing down
the learning process. Conversely, the belief approach to defining rewards has greater space com-
plexity, and for large S will also have high time-complexity. Choosing which reward methodology
to choose from is, really, more of an art than a science. The literature varies greatly, and you
should intuit as follows: If observations fully inform rewards, take R : O x A x O — R, otherwise,
if S is reasonably small in comparison to N, take R : S x A x S — R, else take R : T x R. There
is a bit more nuance to this, e.g. if N = oo but our game usually terminates in just a few moves
episodic reward will likely outperform belief-level reward, but in general this is a good guiding
philosophy for the applied mathematician. We note that theorists, traditionally, take either the
belief-level signal or episodic approach, whereas practitioners tend to use the observation signal or
episodic approach, depending on the problem.

HDetails are left to an exercise
12For those familiar with recursive Bayesian estimation and/or the Kalman filter, that’s how we usually update
our beliefs.



We summarise the three reward schemas covered in figure 1.

All together, we've described our imperfect information learning agent with the 9-tuple

(S, A4,0,T,Ty,O, R,~,N)

Note, we justified adding v € [0,1) last section. The idea here is the same, though it is not
necessary if we use episodic rewards R : 7 — R. This tuple defines a discrete partially observable

Markov decision process.

1. Observation
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Figure 1: POMDP reward schemas
Definition 2. (discrete POMDP) A discrete partially observable Markov decision process is a
9-tuple (S, A, O, T, Ty, 0, R,~, N) where
e S, A, O are sets, named the state/action/observation spaces respectively.

e T(s|a,s) : SxAxS —[0,1] is a conditional distribution, named the transition distribution,
describing the dynamics of state-action updates.

e T(s): S — [0,1] is a distribution, named initial state distribution, describing the dynamics
of initial state selection.



O(ols) : O xS — [0,1] is a conditional distribution, named the observation distribution,
describing the dynamics of obtaining observations from hidden world states.

o R s a reward map, which can either be O x AxO — R, Sx AxS = R or (OxA)Nx0O =R
depending on whether (A) observations are fully informative about rewards (B) whether beliefs

by : A(S) — [0,1] are held.

v € 10,1) is the discount rate
o N is the time-horizon

It remains to define the learning objective in this setting. Let (S,A, O, T, Ty,0, R,v,N) be a
discrete POMDP. Earlier, the Markov assumption (assumption 1) allowed us to express a policy
as a conditional distribution m(als) : A x & — [0,1]. Naively, we’d expect that we can instead
define our policies by instead conditioning on o € O. In practice this is forgetful, causing us to
make decisions on incomplete information, due to the fact that o € O does not contain all the
information about the corresponding world state s € S. Recall the belief framework. As we obtain
more observations, we expect to be more certain of our beliefs about the current state, despite this
state changing Stochasticallym

We'll need to define N subpolicies, m;, for each of the N levels of information depth we can have,
to define a general global policy w. Each subpolicy 7; will take the up to time ¢, and use this
to construct an action distribution. In particular, we will condition on the history up to time ¢,
rather than just s € S. Let 7, = (O x A)" x O be the space of t-trajectoreis, and let A(A) be the
A-simplex. Then, a policy for a POMDP is a family of maps m = {m; : T — A(A)}Y,.

The learning objective is then defined analogously. We leave the details for each reward function
case to the reader.

3 Exercises

1. Consider the game of chess, as laid out in example 1.

(a) Describe the action space of the full game of chess, with castling, en-passant, and full
pawn functionality.

(b) Can we prune S, A without losing any information? If so, how?

130r, at least, as certain as before, so certainty is weakly increasing.
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2. Let (S, A, T, Ty, R,v,N) be a Markov decision process. Let T(-; m) denote the distribution
of episodes 7 sampled with policy 7. Prove that, for all episodes 7,

N
T( T0 S0 HW at|3t St‘st—hat—l)
t=1

3. Fill in the details of proposition 1.

4. (harder) Derive the episode distribution for an POMDP with policy .
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