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1 Notation
I have attempted to introduce all non-standard1 as and when it used, but to save ink here
are some is some common notation. If any notation is unclear in this document please
email me and I’ll add it here.

• N = {1, 2, 3, . . . } denotes the positive integers

• N0 = {0, 1, 2, . . . } denotes the nonnegative integers.

• Z = {. . . , −1, 0, 1, . . . } denotes the integers

• Q = {a/b : a, b ∈ Z} denotes the rational numbers

• R denotes the real numbers, R+ the positive reals and R≥0 the nonnegative reals.

• C denotes the complex numbers

• Z/nZ denotes the integers modulo n.

• ⌊x⌋ denotes the greatest integer less than or equal to x ∈ R

• ⌈x⌉ denotes the smallest integer greater than or equal to x ∈ R.

• We write a | b if a ∈ Z divides b ∈ Z, i.e. if there exists some k ∈ Z with b = ka.

•
(n

k

)
= n!

k!(n−k)! denotes the binomial coefficient2.

• We use iff on occasion as shorthand for if and only if, or equivalently ⇔.

• ∝ denotes proportionality, i.e. a ∝ b if there exists c > 0 with a = bc.

• We write
(A

k

)
to denote the set of subsets size k of A.

• We write P(A) for the set of all subsets of a set A.

• When clear from context, we use the combinatorial notation [n] = {1, . . . , n}.

• We denote the empty set {} by ∅.

• When defining a to be b, we may write a := b to make it clear this is a definition.

1That is, non-standard to a student familiar with the A-Level mathematics syllabus.
2This is sometimes written as nCr and said as “n choose k”. At any reasonable level of mathematical

maturity one tends to deviate from this nomenclature and as such, so will we.

2



2 BMO 1

2.1 1999 - 2000

2.1.1 Question 2

Problem. Prove that
2000

∣∣∣ 121n − 25n + 1900n − (−4)n

for any n ∈ N

Idea: Factor 2000 and do some modular arithmetic.

Solution. Let
f : N → N, n 7→ 121n − 25n + 1900n − (−4)n

Factor 2000 = 24 · 53, then it suffices to prove

53 = 125
∣∣∣ f(n) and 24 = 16

∣∣∣ f(n)

for each n ∈ N. These are easily seen working modulo 16 and 125. Observe

f(n) ≡ 9n − 9n + (−4)n − (−4)n ≡ 0 (mod 16)

and
f(n) ≡ (−4)n − 25n + 25n − (−4)n ≡ 0 (mod 125)

Hence, we deduce 2000 | f(n).

Remark. A competitor not yet familiar with modular arithmetic may prove, for integer
k and positive integer n,

a
∣∣∣ bn =⇒ a

∣∣∣ (b + ka)n

by using the fact
a
∣∣∣ b =⇒ a

∣∣∣ b + ka

and expanding (b + ka)n. All of this is elementary and leads to an analogous solution.
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2.1.2 Question 3

Problem. Let ABC be a triangle with ∠BAC = 90◦. Find the point P on the perimeter
of ABC such that the quantity

|AP | + |BP | + |CP |

is minimised.

Idea: Notice an invariant that reduces the problem to three cases. The non-trivial case is
to be handled using the equality of areas in congruent triangles.

Solution. Suppose P is on BC. Then it is clear |BC| = |BP | + |CP | and hence we have
an invariant. Thus, it suffices to find P on BC such that |AP | is minimised, which is when
AP is orthogonal to BC. Identical arguments can be made for when P is on AB and (resp.
AC) to see we have minimality when CP is orthogonal to AB (resp. BP orthogonal to AC).

Case 1: P on BC:
P is the foot of the altitude from A. Hence the triangle APB is congruent3 to APC. In
particular they both have equal area, which allows us to deduce

|AP | · |BP |
2 = |AB| · |AC|

4 = |AP | · |CP |
2 =⇒ |AP | = |AB| · |AC|

|BP | + |CP |
= |AB| · |AC|

|BC|

where the implication follows via simple algebra. All together

|AP | + |BP | + |CP | = |AB||AC|
|BC|

+ |BC|

Case 2: P on AB
AC is the altitude from C and has foot A. Hence, P = A and

|AP | + |BP | + |CP | = |AB| + |AC|

Case 3: P on AC
By an identical argument see that, again, P = A and

|AP | + |BP | + |CP | = |AB| + |AC|

Let |AB| = a, |AC| = b and |BC| = c. Suppose P = A, which is the case iff

ab

c
+ c > a + b

3By SAS or AAA.
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Use the Pythagorean theorem to express

ab

c
+ c =

√
a2 + b2 + ab√

a2 + b2

It is equivalent to check4

(√
a2 + b2 + ab√

a2 + b2

)2
> (a + b)2

which reduces to
a2b2

a2 + b2 > 0

and hence it is clear that the original inequality holds everywhere, meaning P = A.

Remark. If we didn’t spot the invariant, we could’ve taken a purely coordinate theoretic
approach to the problem. This looks ugly, but there could be a nice trick.

Remark. There are many ways we can handle the resulting inequality after our geometry.

4As the map x 7→ x2 is monotone increasing on R+
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2.1.3 Question 4

Problem. Define the sequence (an)n≥0 for positive integers k by

a0 = 1 and an = kn + (−1)nan−1, n ≥ 1

Find all k such that 2000 is a term in (an).

Idea: Look at the subsequences of even/odd terms of (an). This will give us a closed form
for (an) via some bash and it is then a number theory problem.

Solution. Run the recursion a second time to see, for n ≥ 2,

an = kn + (−1)n
[
k(n − 1) + (−1)n−1an−2

]
= k (n + (−1)n(n − 1)) − an−2 (†)

If the (−1)n is constant we have easy recursions. Let (bn) and (cn) by bn = a2n, n ≥ 0 and
cn = a2n+1, n ≥ 0 respectively. It is clear from (†) that, for n ≥ 1,

bn = k(4n − 1) − bn−1 and cn = k − cn−1

Hence we compute

bn = k(4n − 1) − bn−1

= k(4n − 1) − k(4(n − 1) − 1) + bn−2

= · · ·

= 4k
n−1∑
m=0

(−1)m(n − m) − k
n−1∑
r=0

(−1)r + (−1)n

using b0 = a2·0 = 1. Similarly, we compute

cn = k − cn−1 = k − k + cn−2 = · · · = k1{n odd} + (−1)n(k − 1)

using c0 = a2·0+1 = k − 1, where 1{·} is the indicator function5. Now observe, by reversing
the order of summation (i.e. by substituting m 7→ n − 1 − m),

n−1∑
m=0

(−1)m(n − m) =
n∑

m=1
(−1)n−mm = (−1)n

n∑
m=1

(−1)mm

= (−1)n ×

−1 + 2︸ ︷︷ ︸
=1

−3 + 4︸ ︷︷ ︸
=1

−5 + 6︸ ︷︷ ︸
=1

− · · · + (−1)nn

 =
{

n/2 : 2 | n

(n + 1)/2 : 2 ∤ n

5That is, for a subset A ⊆ N one has 1{n ∈ A} =
{

1 : n ∈ A

0 : n ̸∈ A
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All together, we get

bn =
{

1 + 2kn : n ≡ 0 (mod 2)
2k(n + 1) − k − 1 : n ≡ 1 (mod 2)

It is clear that

cn =
{

k − 1 : n ≡ 0 (mod 2)
1 : n ≡ 1 (mod 2)

It suffices to solve bn = 2000 and cn = 2000. For the latter, it is clear only k = 2001 gives
a solution. For the former, if n = 2m, we seek the existence of pairs (m, k) with

1 + 4km = 2000

By parity, it is immediately clear there are no such pairs. For n = 2m + 1, solve

k(4m + 3) = 2001 = 3 · 23 · 29

Reducing modulo 4, any solution (m, k) must have k ≡ 3 (mod 4). Hence, writing k =
3a23b29c for a, b, c ∈ {0, 1}, we have k ∈ {3, 23, 3 · 29, 23 · 29}. Appending the k = 2001
solution, obtain

k ∈ {3, 23, 87, 667, 2001}

as our set of possible k.

Remark. It is quicker to list terms, guess the general form of (an) and prove it by induc-
tion. I jumped straight into computations, hence the inelegance.

Remark. I wonder if there is a clever trick that allows us to solve without computing a
closed-form expression for an? It doesn’t look likely admittedly.
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2.1.4 Question 5

Problem. Suppose there are 7 people who wish to form 4 teams to compete in a quiz. In
how many ways can they do this? Suppose another person joins, now how many ways can
they form the teams?

Idea: Fix the team sizes and count each case.

Solution. We will split the count into the cases of possible team sizes. WLOG we fix a
descending order on the team sizes.

Case 1: (4, 1, 1, 1)
Once we’ve chosen our four person team, there is nothing left to choose. Hence we get(7

4
)

= 35 combinations.

Case 2: (3, 2, 1, 1)
Once we’ve chosen our three person team, we have 4 remaining players to choose our two
person team from. Hence we get

(7
3
)(4

2
)

= 210 combinations.

Case 3: (2, 2, 2, 1)
We choose our two-person teams one after the other as before, but note this time we will
count some repetitions. Taking this approach, we count the 3! ways of arranging the three
two-person teams in a line and hence we have

(7
2
)(5

2
)(3

2
) 1

3! = 105 combinations.

Thus, summing over our disjoint possibilities, we obtain 350 combinations in total.

For the second part of this problem we take an essentially identical approach to see that
there are 1701 combinations. This is left to the reader.

Remark. We may instead compute the number of combinations in case 3 as(
7

2, 2, 2

)
1
3! = 7!

2!2!2!3! = 105

Remark. We could also recognise these as the Stirling numbers of the 2nd kind S(7, 4)
and S(8, 4). These obey

S(n + 1, k) = kS(n, k) + S(n, k − 1)

which trivialises the second part.
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2.2 2000 - 2001

2.2.1 Question 1

Problem. Find all two digit n ∈ N for which the digit sum of 10n − n is divisible by 170.

Idea: 10n − n = 99 · · · 9ab, so count the 9s and hence compute the digit sum explicitly.

Solution. Let d(m) be the digit sum of an integer m. Then,

d(10n − n) = 9(n − 2) + d(100 − n) (†)

Write n = 10x + y for some 1 ≤ x ≤ 9 and 0 ≤ y ≤ 9. We deduce from (†)

d(10n − n) =
{

89x − 8 : y = 0
89x + 8y + 1 : otherwise

If y = 0 we check for divisibility by 10 and see that x = 2 is forced, which we can verify
gives n = 20 as a solution. Now, for y ̸= 0, we first observe

170
∣∣∣ 89x + 8y + 1 =⇒ 89x + 8y ≥ 169 =⇒ x ≥ 2

Further, by parity, we see that x must be odd. Now we check x ∈ {3, 5, 7, 9} individually.
If n = 10x + y is a viable n then

x = 3 =⇒ 170
∣∣∣ 268 + 8y =⇒ y = 9 (1)

x = 5 =⇒ 170
∣∣∣ 446 + 8y =⇒ y = 8 (2)

x = 7 =⇒ 170
∣∣∣ 624 + 8y =⇒ y = 7 (3)

x = 9 =⇒ 170
∣∣∣ 802 + 8y =⇒ y = 6 (4)

Combining (1), (2), (3), (4) and recalling that when y = 0 we had n = 20 forced, our
possible solutions can be listed as n = 20, 39, 58, 77, 96.

Remark. We could’ve just manually checked each x ∈ {0, 1, . . . , 9}, rather than ruling out
most of these by parity / bounding, making this problem highly accessible.
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2.2.2 Question 3

Problem. A tetromino is a shape composed of four unit squares, each adjacent to at least
one other.

(i) Prove there are exactly 7 tetrominos up to rotation.

(ii) Can we tile6 the 7 tetrominos into a 4 × 7 rectangle?

Idea: (i) fix the maximum number of adjacent squares (ii) colour and spot an invariant

Solution to i. For each tetromino A, let ω(A) be the maximal number of adjacent squares
in T . It is immediately clear ω(T ) ∈ {2, 3, 4}.

ω(A) = 4
Clearly there is only one possibility, the I-tetromino.

ω(A) = 3
Here we observe three possibilities, the L-tetromino, J-tetromino or T -tetromino. Fix an
orientation and place 3 squares in a straight line. There are

(3
1
)

= 3 ways to place the
two squares on top, and each resulting tetromino uniquely corresponds to a tetromino con-
structed by placing the remaining square underneath. Hence there are 3 such tetrominos.

ω(A) = 2
Here we observe three possibilities, the L-tetromino, J-tetromino or T -tetromino. Repeat
the ω(A) = 3 argument.

Hence, we count 1 + 3 + 3 = 7 tetrominos in total. Explicit constructions are given below.

I
O T L J S Z

Solution to ii. Colour the squares red and blue in an alternating pattern, so that there
are an even number of red and an even number of blue squares. Notice the T-tetronimo,
no matter where we place it, will contain either 3 red or 3 blue squares. The remaining
tetronimos all contain 2 red and 2 blue squares no matter where we place them. Deduce
that any tiling of the tetronimos into the 4 × 7 board must contain an odd number of red
and blue squares. Hence, we conclude no such tiling exists.

6Equivalently, can we pack the 7 tetronimos into a 4 × 7 rectangle such that no two tetronimos overlap?
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2.2.3 Question 4

Problem. Let {x} denote the nearest integer7 to x ∈ R. Define (an) by an = n + {
√

n}.
What is the smallest k ∈ N such that ak, ak+1, . . . , ak+2000 are consecutive integers?

Idea: Observe this is equivalent to finding the minimal k with {
√

k} = {
√

k + 2000} and
do some bounding to solve this equation.

Solution. We begin by observing an+i ≥ an + i with equality if and only if {
√

n} =
{
√

n + i}. Hence it suffices to find the smallest k such that {
√

k} = {
√

k + 2000}. We now
work by bounding. Firstly, see that {

√
k + 2000} will round up if

√
k + 2000 ≥

√
k + 1,

hence we require8

√
k + 2000 <

√
k + 1 ⇐⇒ k + 2000 < k + 2

√
k + 1 ⇐⇒

√
k >

1999
2 ⇐⇒ k >

19992

4

Now we claim, for x ∈ R, if {
√

x} = {
√

x + 2000} then {√
y} = {

√
y + 2000} for all y ≥ x.

One way to see this is to notice
√

y + 2000 − √
y is a decreasing function9. Let us consider

the critical value x = 19992

4 . It is clear
√

x = 1999/2 and hence {
√

x} = 1000. Further,

{√
x + 2000

}
=


√

19992

4 + 2000

 =


√(1999

2 + 1
)2
 = 1001

Unfortunately, these quantities are thus not equal. However, our feasible gap between√
x + 2000 −

√
x will be strictly less than 1 on (2001/2, 20012/2). Hence, we will have

x ≥ 20012/2. In the case of equality, we have {
√

x} = 1001 and

{√
x + 2000

}
=


√

20012

4 + 2000

 =


√(2001

2 + 1
)2

− 2

 = 1001

Hence, any k ≥ 20012

4 works. Take

k =
⌈

20012

4

⌉
=
⌈

20002

4 + 2 · 2000
4 + 1

4

⌉
=
⌈
1001000 + 1

4

⌉
= 1001001

minimally and the problem is solved.

Remark. I’m not particularly pleased with this solution. We handwave the jump from
x ≥ 19992

4 to x ≥ 20012

4 . A rigorous justification is desired.

7We round up the case when x = a + 0.5, a ∈ Z
8Note we may use x < y ⇐⇒ x2 < y2 as both sides are positive and x 7→ x2 is strictly increasing on R+
9We can prove this with calculus, the Cauchy-Schwarz inequality or Jensen’s inequality.
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2.2.4 Question 5

Problem. Let ABC be a triangle with side lengths a, b, c and circumcircle Γ radius r.
Prove ABC is right-angled if and only if a2 + b2 + c2 = 8r2.
Idea: Relate the angles at A, B and C and the radius R using the law of sines.

Solution. We begin with the following claim, which for some will be a well known fact.

Claim:
a

sin∠BAC
= b

sin∠ABC
= c

sin∠ACB
= 2r

Proof of claim. Let O be the centre of Γ and draw the altitude from O to BC, letting D
be the foot. By the inscribed angle theorem we have ∠BOC = 2∠BAC and hence, as the
triangle OBC is isosceles, ∠OBC = ∠OCB = 90 − ∠BAC. Thus,

r = |BD|
sin (90◦ − ∠OCB) = |BD|

sin∠BAC
= a

2 sin∠BAC

Repeating for the altitudes O to AB and O to AC proves our claim.

Using our claim, we see that10

a2 + b2 + c2 = 8r2 ⇐⇒ sin2 ∠BAC + sin2 ∠ABC + sin2 ∠ACB = 2

Now the problem reduces to trigonometric bash. Let ∠BAC = A, ∠ABC = B and
∠ACB = C. Then

cos2 A+ cos2 B + cos2 C = cos2 A + cos2 B + cos2(180◦ − (A + B))
= cos2 A + cos2 B + cos2(A + B)
= cos2 A + cos2 B + (cos A cos B − sin A sin B)2

= cos2 A + cos2 B + cos2 A cos2 B + sin2 A sin2 B − 2 sin A sin B cos A cos B

= 1 + cos2 A cos2 B + (1 − cos2 A)(1 − cos2 B) − 2 sin A sin B cos A cos B

= 1 + 2 cos2 A cos2 B − 2 sin A sin B cos A cos B

= 1 − 2 cos A cos B cos C

Hence,
sin2 A + sin2 B + sin2 C = 2 + 2 cos A cos B cos C

Clearly, this is equal to 2 iff one of A, B or C are equal to 90◦ so we’re done.

Remark. The first claim we made, as with the trig indentity we proved, are fairly well
known11. If one knows both of these facts the problem is trivial.

10Note we assume, as Γ is a circle, r > 0 to divide through by 4r2.
11Fairly well known in olympiad circles that is, I didn’t know them!

12



2.3 2001 - 2002

2.3.1 Question 1

Problem. Find all (m, n) ∈ N × N such that n is odd and

1
m

+ 4
n

= 1
12

Idea: Rearrange and turn into a divisibility problem.

Solution. Observe,

1
m

+ 4
n

= 1
12 =⇒ 12n + 48m = mn =⇒ (m − 12)(n − 48) = 12 · 48 = 2632

Hence, m − 12 = 2a3b and n − 48 = 26−a3b−2 for integer a, b. Further, n odd ⇒ a = 6 so

(m, n) ∈ {(588, 49), (204, 51), (76, 57)}

are the only possible solutions.

Here is a more obvious solution, taking the natural approach to solve m = f(n).

Alternative solution. Observe, by simple algebra,

1
m

+ 4
n

= 1
12 =⇒ m = 12n

n − 48

Hence it suffices to solve the equation

n − 48
∣∣∣∣∣ 12n =⇒ n − 48

∣∣∣∣∣ 12n − 12(n − 48) = 576 = 26 × 32

Thus, we have n = 2a3b for a = 0, . . . , 6 and b = 0, 1, 2 and n odd gives a = 0. We once
again deduce

(m, n) ∈ {(588, 49), (204, 51), (76, 57)}

are the only possible solutions.

Remark. This is one of the rare BMO problems where working iteratively, taking the
obvious step each time, does actually work. The less obvious, i,e. non alternative, does not
depend on the knowledge that, for all k ∈ Z,

a
∣∣∣ b =⇒ a

∣∣∣ b − ka

making it accessible to even the most inexperienced candidates.

13



2.3.2 Question 3

Problem. Solve over x ∈ R+ the equation

x +
⌊

x

6

⌋
=
⌊

x

2

⌋
+
⌊2x

3

⌋
Idea: Reduce to an integer equation and check cases modulo 6.

Solution. Observe that the RHS is always in Z, whereas the LHS is in Z if and only if
x ∈ Z. Hence, it suffices to solve over x = n ∈ N. To do this, we look at the cases on n
modulo 6. Write n = 6m + k, k = 0, . . . , 5. Then it is clear our equation reduces to

k =
⌊

k

2

⌋
+
⌊2k

3

⌋
which is true if and only if k ̸= 1. Hence our solution set is

x ∈ N \ {n ∈ N : n ≡ 1 (mod 6)}

and the problem is solved.

Remark. Boring and easy, I would expect this to be a question 1 on a modern paper.
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2.3.3 Question 4

Problem. Suppose 12 people are seated around a circular table. In how many ways can
6 pairs shake hands so that no sets of arms cross?

Solution.

15



2.3.4 Question 5

Problem. Let f : N → N be strictly increasing with

f(n + f(m)) = f(n) + m + 1 (†)

for all m, n ∈ N. What are the possible values of f(2001)?

Idea: Notice f has constant differences and hence is linear.

Solution. Substituting n 7→ n + 1 into (†) and taking the difference with n 7→ n, see

f(n + f(m) + 1) − f(n + f(m)) = f(n + 1) − f(n) (‡)

for all m, n ∈ N. Hence, a shift by f(m) does not alter the difference f(n + 1) − f(n). We
naturally conjecture that f has constant differences.

Claim: f(n + k + 1) − f(n + k) = f(n + 1) − f(n) for all n, k ∈ N.

Proof of claim. It is clear f : N → N strictly increasing ⇒ f unbounded. Hence, we may
choose m ∈ N with f(m) ≤ k < f(m + 1). Again, using the monotonicty of f , see

f(n + f(m)) ≤ f(n + k) ≤ f(n + f(m + 1))

and
f(n + f(m) + 1) ≤ f(n + k + 1) ≤ f(n + f(m + 1) + 1)

Subtracting these inequalities and using (‡), we deduce our claim.

Our claim makes it clear12 that f is linear, i.e. there exist constants a, b ∈ Z such that for
all n ∈ N we have f(n) = an + b. Using (†) with n = m, observe

a(n + an + b) + b = an + b + n + 1 ⇐⇒ (a2 − 1)n = 1 − ab

For the LHS to be constant, a ∈ {±1} is forced. f strictly increasing ⇒ a = 1 = b so that
f(n) = n + 1 for all n ∈ N. We conclude f(2001) = 2002 is the only possibility.

Remark. The phrasing of this problem suggests it is possible to do this without solving
the functional equation. I cannot see a feasible way.

12To see this, use f(n + 1) − f(n) = c ∈ N and backwards induct f(n) = c(n − 1) + f(1).
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2.4 2002 - 2003

2.4.1 Question 3

Problem. Let x, y, z ∈ R+. Given that x2 + y2 + z2 = 1, prove

x2yz + xy2z + xyz2 ≤ 1
3

Solution. Let · denote the dot product in R3. By the Cauchy-Schwarz inequality,

x2yz + xy2z + xyz2 = (xyz, xyz, xyz) · (x, y, z) ≤ ∥(xyz, xyz, xyz)∥∥(x, y, z)∥ =
√

3xyz

By the AM-GM inequality,

3
√

x2y2z2 ≤ x2 + y2 + z2

3 = 1
3 =⇒ xyz ≤ 1

3
√

3

The result immediately follows.

Remark. There is an elementary solution using only the trivial inequality, but this is far
from obvious. See the mathematics stack exchange
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2.4.2 Question 4

Problem. Let m, n ∈ N and consider a m×n grid R of lattice points13 in the plane. What
is the maximum number of points in R we may colour red so that no collection of 3 red
points form a right-angled triangle with sides parallel to the axis?

Solution. Let χm,n denote the desired quantity. It is clear we have χ1,n = n and χm,1 = m,
as we may colour each point in the lines 1 × n and m × 1 without inducing a right-triangle
(or in fact, any non-degenerate triangle). Now suppose m, n ≥ 2 and denote the points
in R by (ri,j)(i,j)∈[m]×[n]. For fixed j, it is clear if we colour ri1,j and ri2,j with i1 ̸= i2
we cannot colour any other points in the rows (ri1,j)j∈[n], (ri2,j)j∈[n] without inducing a
right-triangle with sides parallel to the axis. Suppose we have a colouring with two distinct
points coloured in two distinct columns. Then it is clear we may only colour at most m of
these without inducing a right-triangle with sides parallel to the axis. We can repeat our
argument for the rows of R to see, if we have two rows with two distinct points coloured
that we may only colour at most n points. We deduce χn,m = max{m, n} if we colour at
least 2 distinct points in at least 2 distinct rows or columns.

Instead, suppose there is only one column with at least 2 distinct coloured points. We
can colour m − 1 of points in this “colourful” column and n − 1 points in the row that
isn’t coloured in the “colourful” row. It is clear this is the best we can do with a colourful
column. An analogous argument for a colourful row, giving χm,n = m + n − 2 in this case.
Hence, χm,n = max{max{m, n}, m + n − 2} = m + n − 2.

Remark. This could probably be written in a better way, but the problem is boring
when you spot the “colourful row” strategy so I’m leaving it here. The problem where we
disclude any right-triangle seems more interesting. I can’t find an obvious approach like in
this question. Perhaps the pigeonhole principle works. Exercise for the motivated reader!

13That is, points with integer coordinates.
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2.4.3 Question 5

Problem. Solve over a, b, c ∈ N the equation

a!b! = a! + b! + c! ((†))

Idea: Keep bounding things until it all comes together

Solution. WLOG a ≤ b. Notice, by factoring the terms containing a or b,

a!b! = a! + b! + c! =⇒ a! − 1 = c! + 1
b! − 1

Hence, if (a, b, c) forms a solution we must have

b! − 1
∣∣∣ c! + 1 =⇒ b < c

We also spot immediately that a ≥ 3 is forced. Now, see that

a!b! = a! + b! + c! =⇒ b! = 1 + b!
a! + c!

a!

As a ≥ 3, b ≥ 3 and hence the LHS is even. For the RHS to be even, it is clear we require
at least one of b ≤ a + 1 or c ≤ a + 1 to be true. As b < c, we deduce a ≤ b ≤ a + 1.
Suppose a = b, then

(a!)2 − 2a! − c! = 0

which has integral roots14 only if
√

1 + c! ∈ Z. This can only happen if c! = (m−1)(m+1)
with Z ∋ m < c. We can bound c! ≤ c(c + 2) for all c ≥ 5 easily, hence we need only check
c ∈ {1, 2, 3, 4}. By hand we see only c = 4 works. In this case we’re left with

(a!)2 − 2a! − 4! = 0 =⇒ (a! − 6)(a! + 4) = 0 =⇒ a = 3

Hence, the only solution with a = b is (a, b, c) = (3, 3, 4). Now for b = a + 1, see

a!(a + 1)! = a! + (a + 1)! + c! =⇒ (a + 1)! = 1 + (a + 1) + c!

Now as c > a+1 the RHS has remainder 1 when divided by a+1, whereas the LHS clearly
has remainder 0. Hence, the only solution to (†) is (a, b, c) = (3, 3, 4).

14Over the variable a that is.
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3 BMO 2

3.1 1999 - 2000

3.1.1 Question 2

Problem. For x, y, z ∈ R+, minimise x2 + 4xy + 4y2 + 2z2 subject to xyz = 32.

Idea: Apply AM-GM to reduce to one variable and apply AM-GM again to finish.

Solution. Let f(x, y, z) = x2 + 4xy + 4y2 + 2z2. Notice

f(x, y, z) = (x + 2y)2 + 2z2

By AM-GM we have

x + 2y ≥ 2
√

2xy with equality iff x = 2y

and hence, fixing z, f(x, y, z) is minimised15 at x = 2y. We can thus reduce to

g(y, z) = 16y2 + 2z2

Now xyz = 32 ⇒ z = 16/y2 so we further reduce to

h(y) = 16y2 + 2 · 162

y4

Applying AM-GM again, we see

h(y) = 8y2 + 8y2 + 2 · 162

y4 ≥ 3(8 · 8 · 2 · 162)1/3 = 96

with equality iff 8y2 = 8y2 = 2 · 162

y4 ⇒ y = 2. Hence 96 is our minimal value and this
occurs at the point (x, y, z) = (4, 2, 4).

Remark. When applying the AM-GM inequality we want the RHS to be constant, or we
will not be able to deduce the minimal value is at equality. This is why we split into 3
terms on the second application.

Remark. We could’ve used calculus to minimise h(y) but calculus + olympiad = bad.

15This is as xyz = 32 ⇒ xy = 32/z and hence the product on the RHS is fixed. In fact, it is well known
(proof also via AM-GM) that the sum of two positive variables u + v with fixed product uv is minimised
at u = v so could’ve instead have just quoted this, though proving things yourself is always preferred!
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3.1.2 Question 3

Problem. Find a, b ∈ N with

(a1/3 + b1/3 − 1)2 = 49 + 20 3√6

Idea: Write
√

49 + 20 3√6 = x + y 3√6 + z 3√36 for some x, y, z ∈ Q.

Solution. We begin by conjecturing that
√

49 + 20 3√6 = x + y 3√6 + z 3√36 for some x, y, z.
This amounts to finding a solution to the system

2xz + y2 = 0, 3z2 + xy = 10, x2 + 12yz = 49

over x, y, z ∈ Z. By eliminating variables, we find (x, y, z) = (−1, 2, 2) works. Hence,√
49 + 20 3√6 = −1 + 2 3√6 + 2 3√36

To find a solution (a, b) it suffices to solve

a1/3 + b1/3 − 1 = −1 + 2 3√6 + 2 3√36

It is then clear we may take a = 48 and b = 288.

Remark. Motivating our conjecture takes some thought. Assuming the existence of16

such a, b, taking square roots tells us 3
√

a + 3√b − 1 =
√

49 + 20 3√6. If we let a or b be
cubes, we see this is doomed. Further, if there does not exist x ∈ N with a = x3b we are
also doomed. From here, our conjecture becomes a fairly natural guess.

16Note the question tells us this exists, so we can cheese our way into this idea. The question “Are there
a, b ∈ N with . . . ? If so, find such a pair.” would make this idea require a touch more inguinity.
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3.1.3 Question 4

Problem. Find a subset A ⊂ N of cardinality 10 with the property that no 6 element subset
of A has sum divisible by 6. Can we find A ⊂ N of cardinality 11 with this property?

Solution. It is sufficient to construct a 10-tuple X in (Z/6Z)10 with the property that no
6 elements sum to 0. Clearly, we cannot have all elements of X being equal17. We try
2 unique elements. It suffices to find residues a, b ∈ Z/6Z and multiplicities of a and b
respectively x, y ∈ {1, . . . , 10}, x + y = 10 with our desired property. We need x = y = 5,
or we can sum the same element 6 times to get sum 0. We can choose any a and b provided
az + b(6 − z) ̸= 0 for each z ∈ {1, . . . , 5}. By enumeration, we see we can take a = 1, b = 2
so that X = (1, 1, 1, 1, 1, 2, 2, 2, 2, 2). We can then take

A = {1, 7, 13, 19, 25, 2, 8, 14, 20, 26}

to exhibit such a set.

A clean proof for the second part is desired.

Remark. Let ω(A) denote the number of unique remainders mod 6 in A. It looks like
case bashing on ω(A) ∈ {1, 2, . . . , 6} (noticing we can reduce to ω(A) ∈ {3, 4, 5} easily)
should work, but I can’t find a clean proof. You can rule out any case where there are 3
occurences of the same remainder for example by parity, and I imagine similar arguments
rule out the others but I couldn’t see them :(

Remark. This is a special case of a theorom of Erdős, Ginzburg and Ziv, which states
any sequence a1, . . . , a2m−1 has a subset I ⊂ {1, . . . , 2m − 1} of size m with

∑
i∈I ai ≡ 0

(mod m). Proofs of this are highly nontrivial, and mimicking these seems infeasible. The
most elementary approach uses the combinatorial Nullstellensatz.

17Or we may sum any 6 of them to obtain 0.
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3.2 2000-2001

3.2.1 Question 1

Problem. Aegyptus and Brutus initially have p and q marbles respectively, where p > q.
They take it in turns, starting with Aegyptus, giving each other exactly the number of
marbles the other already possesses (e.g. the first turn will be Aegyptus giving Brutus q
of his marbles, leaving him with p − q marbles). After 2n turns, Aegyptus has q marbles
and Brutus has p marbles. Find the ratio p

q as a function of n.

Idea: Set up a recurrence relation and solve it.

Solution. Let a(n) denote the number of marbles Aegyptus has after n turns, where a(0) :=
p. Set p + q = N . As Aegyptus moves on turn 2m + 1, we have

a(2m + 1) = a(2m) − (N − a(2m)) = 2a(2m) − N

and, as Brutus moves on turn 2m + 2,

a(2m + 2) = a(2m + 1) + a(2m + 1) = 4a(2m) − 2N

A quick induction18 shows that, for all m ≥ 0,

a(2m) = 22mp −
m−1∑
k=0

22k × (2N)

where
∑

∅ · · · := 0. We compute, using the well known formula for a geometric series,

m−1∑
k=0

22k × (2N) = 2N
22m − 1

3

Hence,

a(2m) = 22mp − 2N
22m − 1

3
For our n, we know a(2n) = q. Thus, letting x = p

q , we deduce

q = 22np − 2(p + q)22n − 1
3 =⇒ 1 = 22nx − 2(x + 1)22n − 1

3
This is a simple linear equation, which can be solved to give

x = 2 · 4n + 1
4n + 2

Recalling x = p/q we’re done.

18Work out the first few terms, guess a formula and verify.
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3.2.2 Question 2

Problem. Find all (x, y) ∈ Z × Z with

1 + x2y = x2 + 2xy + 2x + y

Solution. Observe
1 + x2y = x2 + 2xy + 2x + y =⇒ x

∣∣∣ y − 1

by reducing mod x. Hence, if (x, y) is a solution there exists m ∈ Z with y = mx + 1.
Hence, by substituting this in and cleaning things up, we see for x ̸= 0 that

1 + x2y = x2 + 2xy + 2x + y =⇒ m(x2 − 2x − 1) = 4

Hence, we have x2 − 2x − 1 ∈ {±1, ±2, ±4}. By checking discriminants we see only the x
with x2 − 2x − 1 ∈ {−1, ±2} are viable, which yield possible x ∈ {−1, 1, 2, 3}. Now,

1 + x2y = x2 + 2xy + 2x + y =⇒ y = x2 + 2x − 1
x2 − 2x − 1

so we have viable pairs (x, y) ∈ {(−1, −1), (2, −7), (3, 7)}. Including the x = 0 possibility,
we deduce

(x, y) ∈ {(−1, −1), (0, 1), (2, −7), (3, 7)}

is our solution set.
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3.2.3 Question 4

Problem. Suppose there are n dwarves of height 1, 2, . . . , n arranged in a circle. Let
V denote the sum of the positive differences (i.e. total variations) between consecutive
dwarves. Find the maximum and minimum, over all arrangements of the dwarves, of V .

Idea: For the minimum, consider the arcs with endpoints 1 and n for each permutation.
For the maximum, employ a “centering” strategy to bound the sum.

Solution. We claim that the minimum value of V is 2n−2, which occurs when the dwarves
are seated in consecutive order. We also claim the maximum value of V is ⌊n2/2⌋, which
occurs when the dwarves are placed in a “zig-zag” pattern.

Let σ ∈ Sn−1 be a permutation of {1, . . . , n − 1} and let V (σ) be the total variation of the
circle where the dwarf with height n is sat at the head of the table and the dwarf with
height σ(i) is sat i ≥ 1 seats along from the head of the table. Let idn−1 ∈ Sn−1 denote the
identity permutation, which corresponds to the consecutive order seating arrangement. It
suffices to see V (σ) ≥ V (idn−1).

It is easy to see V (idn−1) = 2n − 2. We have

V (σ) :=
n∑

i=1
|σ(i + 1) − σ(i)|

where σ(n) := n is fixed and σ(n + 1) = σ(1) (i.e. arguments are taking mod n). Let us
consider the arc 1 = σ(i), σ(i + 1), . . . , σ(i + k) = n. As each term in the sum is bounded
below by 1, if k = 1 it is clear we have V (σ) ≥ V (idn−1). Otherwise, by the triangle
inequality, we have

V (σ) =
k∑

j=1
|σ(i + j) − σ(i + j − 1)| ≥ |σ(i + k) − σ(i)| = n − 1

Repeating this argument for the remaining arc we deduce

V (σ) ≥ 2(n − 1) = V (idn−1)

Now for the maximum, let f(x) :=
∣∣∣x − n+1

2

∣∣∣. By the triangle inequality, it is clear that

n∑
i=1

|σ(i + 1) − σ(i)| ≤
n∑

i=1
f(σ(i + 1)) + f(σ(i)) = 2

n∑
i=1

f(i) ((†))
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We compute
∑n

i=1 f(i) for the odd/even cases of n. Suppose n = 2m, then

2m∑
i=1

∣∣∣∣i − 2m + 1
2

∣∣∣∣ =
m∑

i=1

∣∣∣∣i − 2m + 1
2

∣∣∣∣+ 2m∑
i=m+1

∣∣∣∣i − 2m + 1
2

∣∣∣∣
=

m∑
i=1

[2k + 1
2 − i

]
+

2m∑
i=m+1

[
i − 2k + 1

2

]

=
2m∑
i=1

i − 2
m∑

i=1
i

= 1
2(2m)(2m + 1) − 2 · 1

2m(m + 1)

= m2

The odd case is similar. For n = 2m + 1 we compute
∑2m+1

i=1 f(i) = m(m + 1). Hence,
using (†),

V (σ) ≤ 2 ·
⌊

n2

4

⌋
=
⌊

n2

2

⌋
We get equality when |σ(i + 1) − σ(i)| = f(σ(i + 1)) − f(σ(i)) for all i ≥ 1, which can be
obtained by taking σ(1) = 2, σ(2) = n − 1, σ(3) = 3, σ(4) = n − 2, . . . , σ(n − 1) = 1 in an
alternating matter about the midpoint.

Remark. Beautiful problem! I would be interested in seeing alternative approaches.
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